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Now, what is latency?
• Latency: A delay before something actually takes place
• Well, delay sounds bad, but does that give any problem – broadband 

performance has increased enormously!
• Yes, bandwith has increased, but latency is still a problem!

100 bytes

Leaving Rotterdam for Stockholm

100 bytes

Almost 1 s later (on old GSM), 
the first bit is just arriving in 

Stockholm. The actual data bytes 
have not started to arrive yet!
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But latency can get improved a lot, right?
• Yes, improvements are seen. GSM data trafic may 

perhaps get as low as 0,1 s on a short distance, only 
counting the GSM part itself. But it is difficult to get yet 
better!

• There is a definitive ceiling: Speed of light! Einstein stuff... 
3 * 108 m/s in vacuum. 70% of that, in cable.

• To get around the globe takes more than 0,13 s. 
Impossible to improve!

• To this we have to add all sorts of other latencies...

• And by the way, where was that 
cloud server you were using? 
Australia? Taiwan?
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Via geostationary satellite?
• To stay in the same spot on the sky the satellite has to be 

at a distance of 72 000 km
• Time for a request+response Rotterdam-satellite-

Stockholm and back (round-trip-time, RTT) is 0,5 s!
• Satellites not so common today for IT, but a good example
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The sewing machine anti-pattern
• Typical of old 2-tier client/server solutions but this problem 

appears in recent development too. 
• A lot of small remote calls, sequentially. Chatty.
• Latency adds up!
• 40 calls (not uncommon for old c/s) to the other side of the 

world to show a form, consumes over 5 s without even 
counting the actual data transfer time!

• Classic web site is NOT like this (parallell fetching). Works 
fine to Taiwan! But Ajax used the wrong way may get 
chatty before displaying complete result...
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Naïve SOA

• An example: A common OO design is to use SET and GET 
methods for every separate little attribute.

• It is incredibly easy to generate a SOAP interface directly 
from that class and say that it is a SOA interface.

• The ultimate sewing machine anti-pattern! Try to call a 
majority of the set methods in that class from here to a 
Cloud server in Taipei. Or Redmond, maybe you don’t 
quite know in the Cloud...

• XML is perfect for grouping together hierarchical data – 
use that and create coarse granular SOA interfaces 
instead. (Useful for other reasons as well.) Reduces 
latency impact enormously because of fewer round-trips!
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Different types of clouds
• In my session 13:15 today I categorized Cloud types.
• Type 4, sometimes called ~PaaS, gives the possibility to 

easily deploy your own app code into the Cloud servers. 
• For example in Google App Engine or Microsoft Azure you 

could theoretically deploy just a small class. With one click 
(almost) in Visual Studio the class gets deployed in the 
Cloud. Maybe a bit too easy for inexperienced developers 
  If you don’t think ”coarse granular” you’ll end up with 
terrible latency effects, as in the previous slide!

• So, SOA combined with the Cloud definitively should mean 
coarse granular interface calls.
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Wait, this has all been about SYNC!
• All my examples until now has been ”calls”, RPC, 

synchronous access etc.
• The caller WAITS until the response gets back from the 

Cloud at the other side of the globe, THEN issues the next 
call or whatever. Latencies add up.

• Reasons for talking only about sync so far:
– It is really common in real-life, also in SOA
– Good-old-SOAP access IS really sync
– Even REST really IS sync
– Client/server guys tend to think sync
– Many solutions ”near the UI” gets to be sync
– Above all: The business requirements may lead to sync!
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Maybe sync is an anti-pattern? ASYNC!
• Just send the data, DON’T wait until the server has 

processed it, just continue.
• So, asynchronous instead!
• Usually avoids latency problems
• Reduces dependency on that the other server is up just 

now – higher total uptime probability
• Other positive aspects of the mythical ”loose coupling”...

• Many say that ALL proper SOA interfaces should be async
• Typical example just now: MS Azure coding examples, 

almost all async.

• Watch out so that the logic doesn’t require you to wait for 
an async response before sending the next async request 
and so on – this is AS BAD as sync!
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It’s not that simple, both async and sync have 
pro et contra points – you have to balance

Sync

Async
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Async, pro et contra:
• + Avoids latency problems
• + Loose coupling in the ”time domain”
• + Suitable for message oriented patterns and replication
• + Suitable for EDA – Event Driven Architecture

• - Requires que software: 
ESB, EAI, MOM, WS-RM, homemade...

• - Complicated, expensive and error-prone (!) 
error/exception handling 

• Exception logic dispersed in time and place.
• Both business exceptions and technical exceptions must be fixed

• - Above all: The business requirements may lead to sync! 
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Business requirements – balance!      Examples:
• Price request

– Usually no problem at all to request against a replicated price 
register – prices often can be stated never to change during the day

– Replication uses an async pattern
– No latency problems, nor uptime dependencies

•Request for stock availability
– Can I accept this order, have we got the item in stock?
– This request may be necessary to run sync towards a 

central service!
– Have to handle latency optimization, and uptime 

dependencies

• Invoice is to be sent to customer
– Usually not at all neccessary to be fast. The same day 

usually sufficient
– Async, batch transfer etc
– No latency problems, nor uptime dependencies
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    A complete example

• A cloud SOA service 
is to reach other 
services

• A lot of latencies, in 
many of the stages 
(shown with: X)

• Not only network 
latency! Also app 
server latency, DOM 
latency, proxy 
latency, multiple 
encapsulation layers, 
etc etc

• So, coarse granular!
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Conclusion

• Cloud servers may be located anywhere in the 
world

• Even if you know where they are, it might be far
• Latency is very difficult to decrease. Also a 

theoretical minimum with respect to certain 
distance.

• Cannot use naïve SOA interfaces for the Cloud 
when possibly long distance (or other reasons for 
latency)
– Coarse granular instead!
– Async patterns when possible!

• Sometimes you have to balance, sync may be ok.
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